`
wait_miracle
  • 浏览: 19333 次
  • 性别: Icon_minigender_2
  • 来自: 北京
社区版块
存档分类
最新评论

算法复杂度

 
阅读更多

简介

同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度空间复杂度来考虑。

2时间复杂度

(1)时间频度
一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。算法时间复杂度是指执行算法所需要的计算工作量。
在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度
在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n^2+3n+4与T(n)=4n^2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。
按数量级递增排列,常见的时间复杂度有:
常数阶O(1),对数阶O(log2n)(以2为底n的对数,下同),线性阶O(n),
线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,
k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
算法的时间性能分析
(1)算法耗费的时间和语句频度
一个算法所耗费的时间=算法中每条语句的执行时间之和
每条语句的执行时间=语句的执行次数(即频度(Frequency Count))×语句执行一次所需时间
算法转换为程序后,每条语句执行一次所需的时间取决于机器的指令性能、速度以及编译所产生的代码质量等难以确定的因素。
若要独立于机器的软、硬件系统来分析算法的时间耗费,则设每条语句执行一次所需的时间均是单位时间,一个算法的时间耗费就是该算法中所有语句的频度之和。
求两个n阶方阵的乘积 C=A×B,其算法如下:
# define n 100 // n 可根据需要定义,这里假定为100
void MatrixMultiply(int A[a],int B [n][n],int C[n][n])
{ //右边列为各语句的频度
int i ,j ,k;
(1) for(i=0; i<n;i++) n+1
(2) for (j=0;j<n;j++) { n(n+1)
(3) C[i][j]=0; n2
(4) for (k=0; k<n; k++) n2(n+1)
(5) C[i][j]=C[i][j]+A[i][k]*B[k][j];n3
}
}
算法中所有语句的频度之和(即算法的时间耗费)为:
T(n)=2n3+3n2+2n+1 (1.1)
分析:
语句(1)的循环控制变量i要增加到n,测试到i=n成立才会终止。故它的频度是n+1。但是它的循环体却只能执行n次。语句(2)作为语句(1)循环体内的语句应该执行n次,但语句(2)本身要执行n+1次,所以语句(2)的频度是n(n+1)。同理可得语句(3),(4)和(5)的频度分别是n2,n2(n+1)和n3
算法MatrixMultiply的时间耗费T(n)是矩阵阶数n的函数。
(2)问题规模和算法时间复杂度
算法求解问题的输入量称为问题的规模(Size),一般用一个整数表示。
矩阵乘积问题的规模是矩阵的阶数。
一个图论问题的规模则是图中的顶点数或边数。
一个算法时间复杂度(Time Complexity, 也称时间复杂性)T(n)是该算法的时间耗费,是该算法所求解问题规模n的函数。当问题的规模n趋向无穷大时,时间复杂度T(n)的数量级(阶)称为算法的渐进时间复杂度。
算法MatrixMultiply的时间复杂度T(n)如(1.1)式所示,当n趋向无穷大时,显然有T(n)~O(n^3);
这表明,当n充分大时,T(n)和n^3之比是一个不等于零的常数。即T(n)和n^3是同阶的,或者说T(n)和n^3的数量级相同。记作T(n)=O(n^3)是算法MatrixMultiply的渐近时间复杂度
(3)渐进时间复杂度评价算法时间性能
主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个算法的时间性能。
算法MatrixMultiply的时间复杂度一般为T(n)=O(n^3),f(n)=n^3是该算法中语句(5)的频度。下面再举例说明如何求算法的时间复杂度
交换i和j的内容。
Temp=i;
i=j;
j=temp;
以上三条单个语句的频度均为1,程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)
注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)
变量计数之一:
(1) x=0;y=0;
(2) for(k-1;k<=n;k++)
(3) x++;
(4) for(i=1;i<=n;i++)
(5) for(j=1;j<=n;j++)
(6) y++;
一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分。因此,以上程序段中频度最大的语句是(6),其频度为f(n)=n^2,所以该程序段的时间复杂度为T(n)=O(n^2)。
当有若干个循环语句时,算法时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。
变量计数之二:
(1) x=1;
(2) for(i=1;i<=n;i++)
(3) for(j=1;j<=i;j++)
(4) for(k=1;k<=j;k++)
(5) x++;
程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:
则该程序段的时间复杂度为T(n)=O(n^3/6+低次项)=O(n^3)。
(4)算法时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。
在数值A[0..n-1]中查找给定值K的算法大致如下:
(1)i=n-1;
(2)while(i>=0&&(A[i]!=k))
(3) i--;
(4)return i;
算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关:
①若A中没有与K相等的元素,则语句(3)的频度f(n)=n;
②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。

3空间复杂度

时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作:
S(n)=O(f(n))
算法执行期间所需要的存储空间包括3个部分:
·算法程序所占的空间;
·输入的初始数据所占的存储空间;
·算法执行过程中所需要的额外空间。
在许多实际问题中,为了减少算法所占的存储空间,通常采用压缩存储技术。

4复杂度分析

通常一个算法的复杂度是由其输入量决定的,随着输入的增加,
复杂度

  复杂度

不同算法的复杂度增长速度如右图所示:
为了降低算法复杂度,应当同时考虑到输入量,设计较好的算法。
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics